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Outline of Talk

BACKGROUND AND CHALLENGES

> NOTIONAL MARS REGIONAL NAVIGATION SATELLITE SYSTEM (MRNSS)

SIMULTANEOUS COMMUNICATIONS/TRACKING/NAVIGATION

» SIMULTANEOUS UPLINK, AND 2-WAY DOPPLER/RANGING

» SIMULTANEOUS DELTA-DOR: SAME BEAM INTERFEROMETRY (SBI)

CAN SIMULTANEOUS COMMUNICATIONS/TRACKING ENABLE NEW MISSION
CONCEPT AND SCIENCE?



Background and Challenges (1)

Typically one DSN ground station communicates with one spacecraft in deep space

At Mars when multiple spacecraft are in the beam, one ground station can receive
multiple downlinks (and one uplink) via MSPA, which is a static form of FDMA

Traditional deep space tracking techniques include Doppler, ranging, and delta-DOR

2-Way Doppler/ranging requires tight coordination between ground and flight
(Doppler compensation), and one ground station tracking one spacecraft (1-to-1)

Delta-DOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)

When number of missions increase, and for missions with multiple spacecratft, there
might not be enough DSN antenna assets to meet missions’ communications and
tracking needs

There is a desire to extend the current deep space communications and tracking
techniques to support multiple spacecraft in a beam to improve the antenna usage
efficiency



Background and Challenges (2)

e |n 2016 we proposed a low-cost low-maintenance Mars Regional Navigation
Satellite System (MRNSS) to support human Mars missions [8]:

* Capitalize on the build-up of orbiting and surface infrastructures on Mars during the
human Mars exploration era [1][2][3]

* Leverage on a new geometric trilateration method that simultaneously performs
absolute positioning and relative positioning [4][5]

* Introduce the concept of using relative positioning that provides regional navigation
services in the vicinity of a human Mars landing site (~100 km), thereby relieving the
stringent requirements on orbit determination (OD) of Mars navigation satellites

* Extend current DSN’s tracking approaches of pairing one or two dedicated ground
stations to one spacecraft for a period of time to simultaneously tracking of multiple
Mars orbiters

e Simultaneous Doppler/ranging [6]
e Same Beam Interferometry [7]
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YMars Regional Navigation Satellite System (MRNSS) [8]

Orbits of the Notional Mars Navigation Nodes (3-D View)

Utopia Planitia: 182.5° due East, 46.7° due North
Aerostationary orbiter 1 (Areo45): 162.5° due East

Aerostationary orbiter 2 (Areo90): 207.5° due East
Aerosynchronous orbiter (Areo68): 180° due East and 20° inclined
Deep Space Habitat (Mars48hr):  180° due East, 149.5° inclined




Mars Regional Navigation Satellite System (MRNSS)

Preliminary Results on Localization Accuracy
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2 Simultaneous 2-Way Communications/Doppler/Ranging:
s System Approach

e Assume X-band, which supports low rate commands/telemetry
e The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna

e For N orbiters, the downlinks operate in N allocated frequency bands separated by
N-1 guard bands to prevent interference

e Flight and ground upgrades:

* The N orbiters time-share a single uplink; commands differentiated by SCID (MUPA) [9]
* The ground “Doppler-compensates” the uplink carrier signal in either way:

e With respective to the Mars center

e With respective to the average (centroid) of Doppler’s of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler. Preliminary
simulations: residual Doppler and Doppler rate are bounded by 45 KHz & 2.6 Hz/s
* Flight radio upgrades:

e A different turn-around-ratio for each spacecraft so the same uplink would be

coherently “turned-around” to modulate the telemetry and ranging signals on a
different allocated downlink frequency

e A well-designed tracking loop that can sweep, acquire, and track the unknown
uplink carrier phase and high residual Doppler frequency

* Ground station uses existing MSPA for telemetry/Doppler/range processing



Simultaneous 2-Way Communications/Doppler/Ranging
Doppler and Doppler Rate Profiles
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Simultaneous 2-Way Communications/Doppler/Ranging:
Smart PLL Tracking
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Simultaneous Delta-DOR: Theory of Delta-DOR

Diagrams from “The Evolution of Deep Space
Navigation: 1962-1989,” by Lincoln Wood

© DOMINANT ERRORS:
© UNCALIBRATED MEDIA DELAYS
e STATION CLOCK OFFSETS
e UNCALIBRATED INSTRUMENTAL DELAYS
e BASELINE UNCERTAINTY
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multaneous Delta-DOR: Same Beam Interferometry (1)

e Same Beam Interferometry (SBI) was proposed by Jim Border et. al. to support the
tracking of the Magellan and the Pioneer Venus orbiters over 25 years ago [7]

e Like Delta-DOR, SBI uses double-differencing of signal arrival times to achieve
highly accurate angular distance estimation

— Eliminate clock biases, media delay, instrument delays, etc.

e Instead of using quasar as reference ( 5- 6 degree away), one can use a nearby
spacecraft as a reference (less than a milli-degree)

— Ground antennas do not need to point back-and-forth between the quasar and the
spacecraft, thus increase observation time and simplify operation

— Angular distance between spacecraft is much closer, thus increase accuracy from 10’s
nano-radian to nano-radians

e Quasar calibrations are needed only at the beginning and at the end of an
overlapping pass



multaneous Delta-DOR: Same Beam Interferometry (2)

SAME-BEAM INTERFEROMETRY ERROR SOURCES
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multaneous Delta-DOR: Same Beam Interferometry (3)

MGN ORBIT ACCURACY - PREDICTED
AUGUST 11, 1990

DOPPLER-ONLY

DOPPLER + SBI

0 40 80 120 160 200
TIME PAST EPOCH (min)



multaneous Delta-DOR: Same Beam Interferometry (4)

e SBIl is more accurate, and operationally simpler than Delta-DOR

e Since the introduction of SBI, SBI was used or proposed for use in some deep space
(including lunar) scenarios, e.g. approach/landing, ascent/docking, etc.

Examples:

e Q. Liu, F. Kikuchi, K. Matsumoto, et. al., “Error Analysis of Same-Beam Differential
VLBI Technique using two SELENE satellites,” Advances in Space Research 40 (2007).

e M. Chen, Q. Liu, “Study on Differential Phase Delay Closure of Same-Beam VLBI,”

29 International Conference on Computer Engineering and Technology, April 2010,
Chengdu, China

e S. Chen, Q. Liu, “A Study on Accurate Same Beam Interferometry Differential Phase
Delay Closure,” 12t International Conference on Computer and Information
Technology, October 2012, Chengdu, China

e T. Martin-Mur, D. Highsmith, “Mars Approach Navigation Using the VLBA,”
Proceedings of the 215t International Symposium on Space Flight Dynamics,
Toulouse, France, September 28 — October 2, 2009



Can this Enable New Mission Concept and Science?

e An exercise of a solution looking for the right problems...

e This new “Multiple spacecraft per antenna” approach enables simultaneous
communications, Doppler, ranging, and “delta-DOR” with different spacecraft, thus
greatly reduces the burden of ground network. But can this approach also enable
new mission concepts and science?

e Multiple spacecraft (CubeSats?) orbiting a moon or a planet to provide
simultaneous Doppler measurements

— Spacecraft life-time limitation, e.g. Class-D CubeSats, spacecraft at the harsh radiation
environment of Jupiter

— Short operation duration and graceful degradation

— Spatial diversity of measurements to study system dynamics — gravity, atmosphere, and
magnetic field

e Any ideas?
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